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A METHOD FOR COMPUTATION OF VIBRATION MODES
AND FREQUENCIES OF ORTHOTROPIC THIN SHELLS OF REVOLUTION
HAVING GENERAL MERIDIONAL CURVATURE

By Howard M. Adelman, Donnell S. Catherines,
and William C. Walton, Jr.
Langley Research Center

SUMMARY

This report describes a procedure for computing the vibration modes and frequen-
cies of thin shells of revolution having general meridional curvature and orthotropic elas-
tic properties. The procedure is based on the finite-element method in which the direct-
stiffness approach is used. A geometrically exact finite element is employed. A com-
puter program based on this procedure has been written and details of the program are
described. The geometric characteristics of the shell are used as inputs to the program
in the form of functions of the meridional coordinate. The stiffness and mass matrices
are computed by numerical integration by use of the trapezoidal rule.

The computer program is applied to several shell configurations including two
cylinders, two conical frustums, shells of both positive and negative Gaussian curvature,
and an annular plate. Frequencies are correlated with frequencies from previous inves-
tigations for these shells. The agreement between results of the present analysis and
results from the previous investigations is generally excellent.

INTRODUCTION

A problem of current interest to structural analysts in the aerospace field is that of
determining the dynamic behavior of structures in which some of the components are thin
shells of revolution. Understanding the modes of vibration of the individual shell com-
ponents can be of fundamental importance in connection with this problem. Consequently,
much effort has gone into developing techniques to determine natural frequencies and mode
shapes of the commonly encountered shells of revolution. Few closed-form solutions are
known and, therefore, most of the developments have been in the area of approximation
methods. Among the methods that have been tried are Rayleigh-Ritz methods (refs. 1
and 2), Stodola-type iteration methods (ref. 3), finite-difference solutions (ref. 4), finite-
element methods (refs. 5 to 9), and methods in which the shell boundary-value problem is
reduced to an initial-value problem involving first-order differential equations which
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are numerically integrated (ref. 10). The finite-difference and numerical-integration
metho(ds involve a trial-and-error search for the natural frequencies that will make a
certain determinant vanish. These "'search methods' are relatively slow, and analysts
using them have been known to overlook modes, as noted in reference 3. Stodola-type
methods also lose numerical significance in the calculation of higher modes as noted in
reference 3.

The authors, in the course of developing practical procedures to analyze the forced
response of structures incorporating shells of revolution,required a method for computing
mode shapes and frequencies of shells of revolution having general meridional curvature
and orthotropic elastic properties. These mode shapes and frequencies would be used in
analyses of structures involving such shells where in the analysis the deformation of each
shell is represented by superposition of a number of mode shapes of the shell. Early
experience indicated that selection of representative modes for a shell would require
examination of a great number of its modes some high in the frequency spectrum. It was
therefore necessary that:

(1) The method should give capability for quick calculation of a large number of
modes and frequencies

(2) The mode shapes and frequencies quite high in the frequency spectrum should be
accurately predicted

(3) The analyst should be protected from overlooking modes in computation

In view of these objectives, search methods and Stodola methods were considered
unsatisfactory for the reasons of their inadequacy to meet these requirements. Both the
Rayleigh-Ritz and finite-element approaches seemed to offer better chances for success
in meeting the objectives.

From the viewpoint of the analyst, the outstanding advantage of finite-element and
Rayleigh-Ritz approaches is that they lead to a symmetric eigenvalue problem which is
amenable to fast and accurate solution on a digital computer. In the methods available
for solving symmetric eigenvalue problems, all the modes are computed simultaneously,
and thus any danger of overlooking modes in computation is avoided.

A finite-element approach was selected in preference to a Rayleigh-Ritz approach
for the following reasons:

(1) The computing details of the Rayleigh-Ritz methods reported in references 1
and 2 resulted in use of a large number of terms. These methods lead to relatively poorly
conditioned eigenvalue formulations requiring that a large number of significant figures
be carried in the calculations in order to retain significance in the results. Preliminary
trials with circular plates indicated that the finite-element approach leads to very well-

conditioned eigenvalue problems.
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(2) 1t was believed that the finite-element method would converge more easily than
the Rayleigh-Ritz method when local high stress gradients, such as occur for some edge
conditions (ref. 11), are present.

The element most popularly employed in the finite-element analysis of shells of
revolution has been the conical element (for example, refs. 8 and 9). This element can
exactly fit cylinders and conical frustums. However, for shells having a curved meridian,
use of this element leads to only an approximation of the shell by a series of joined conical
frustums. Thus, the curved meridian is approximated by a series of straight lines. Con-
sequently, an analysis of a shell with a curved meridian based on conical elements may
give inaccurate frequencies and stresses (refs. 5 and 6).

Analysts have been aware that the use of an element which coincides with the shape
of the shell being analyzed would probably improve the accuracy in computed results
(ref. 5). The main impediment to the use of such a geometrically exact element has been
a reluctance on the part of analysts to give up a certain computational convenience asso-
ciated with the conical element. This convenience is that since the shape is fixed, quadra-
tures required to compute the stiffness and mass matrices of the element are performed
only once, and the same matrices are used in every analysis. With a geometrically exact
element, the shape of the element depends on the shape of the portion of the shell which the
element represents, with the result that the integration has to be an inseparable part of
each analysis. It has been recognized that a natural and probably feasible approach to
making the quadratures part of the analysis is to use numerical integration (ref. 5). How-
ever, the objection has remained that for each element the radius of the shell and the two
radii of curvature must be specified as functions of position along the meridian of the
element.

In spite of this objection, the decision was made to develop a computer program to
meet the previously stated objectives based on a geometrically exact element, It was
believed that the necessity for description of the geometry of an element in terms of func-
tions rather than of numerical parameters would present no difficulties in practice if, as
is nearly always the case, the geometry of the entire shell could be described by functions
located in a subroutine which could be readily changed. Development has progressed to
the point where the program has been applied to a variety of shells of revolution of practi-
cal interest. Detailed correlations have been made between frequencies from the program
and frequencies calculated for these shells by other investigators. A cursory correlation
of mode shapes including stresses_has been made for some of these shells but as yet is
inconclusive because of present unavailability of sufficient modal data from the methods of
the previous investigators. These correlations are not presented in this report.

The main purposes of this report are as follows:

(1) To describe the analysis underlying the computer program



(2) To describe the computer program

(3) To present the frequency correlations
SYMBOLS

aO,k’al,k’az,k’as,k coefficients in polynomial displacement function for normal dis-
placement w

Ay matrix which transforms displacements and rotations at ends of an element
to coefficients of polynomial displacement functions (see eq. (13) and table I)

bg k’bl kP9 k’b3 Kk coefficients in polynomial displacement function for meridional
’ b ’ b
displacement u

B matrix defined in equation (42)

C0.%°%1 k%2 k%3 k coefficients in polynomial displacement function for circumferential
I ’ b b
displacement v

Ck matrix whose elements are coefficients in an expression for strain energy of
a shell element in terms of coefficients of polynomial displacement functions

(see eq. (20))

C11,C12,Co0 membrane stiffness constants
Csg in-plane shear stiffness
D diagonal matrix whose elements are eigenvalues of mass matrix (see eq. (39))

D11,D19,D99 flexural stiffness constants

Dgg torsional stiffness

eq,€9,€19 middle-surface strains (see egs. (1a) to (1c))
Ex kinetic energy of kth element

E kinetic energy of shell; also Young's modulus
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frequency

matrix whose elements are coefficients in an expression for kinetic energy of
a shell element in terms of coefficients of polynomial displacement functions
(see eq. (30))

shell thickness

identity matrix

number of elements used to represent a shell

K11,K19,K29,Kge stiffness constants representing interaction between in-plane and

R1,Rg

L-6053

out-of-plane strains
meridional length of a shell
meridional wave number for a freely supported cylinder
element mass matrix
shell mass matrix
circumferential wave number
order of stiffness and mass matrices after edge constraints have been applied

matrix whose elements are coefficients in an expression for kinetic energy
of a shell element in terms of displacements u, v, and w (see eq. (28))

index representing an integration station
total number of integration intervals
radius of a shell measured in plane normal to shell axis

principal radii of curvature of shell
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matrix whose elements are coefficients in an expression for strain energy of
shell element in terms of actual variables in strain energy (see eq. (16))

meridional coordinate

element stiffness matrix

shell stiffness matrix

meridional distance from origin of s to reference edge of a shell
meridional distance from reference edge of shell to center of kth element

meridional distance from reference edge of shell to qth integration station
of kth element

meridional distance from reference edge of a shell to ith location on kth
element at which mode shape is evaluated

time

inverse of matrix Ay

meridional component of middle-surface displacement

matrix whose columns are eigenvectors of mass matrix
circumferential component of middle-surface displacement

strain energy of kth element

strain energy of shell

normal component of middle-surface displacement

meridional coordinate measured within a single element (see eq. (5))

meridional distance from center of kth element to qth integration station




KysKgrK19

Xphgse -

matrix which describes assumed form of variables appearing in strain energy
column matrix containing unknown displacements and rotations

matrix which describes the assumed form of displacements u, v, and w
matrix defined in equation (43)

rotation of shell generator relative to unstrained direction (see eq. (10))
modal column (see eq. (44))

column matrix whose elements are coefficients of assumed-displacement
polynomials (see eq. (18))

meridional length of kth element
circumferential coordinate

changes in curvatures (see eqs. (1d) to (1f))

Ay  eigenvalues of mass matrix

column matrix whose elements are displacements and rotations at ends of an
element (see eq. (22))

mass density
circular frequency
nondimensional frequency

Poisson's ratio

Primes denote differentiation with respect to s or x; superscript T denotes
transpose of a matrix.

Special notations used in machine plots of figures 16, 17, 20, and 21:

N

S/L

circumferential wave number

nondimensional meridional distance



u,v,wW middle-surface displacements in the meridional, circumferential, and normal
directions, respectively

UMAX, VMAX, WMAX maximum values of U, V, and W, respectively

w2 = (Circular frequency)z, sec™2

DEVELOPMENT OF THE STIFFNESS MATRIX FOR A
GEOMETRICALLY EXACT ELEMENT

Strain Energy in Terms of Displacements

For purposes of the following analysis, reference is made to figure 1. In this fig-
ure, u, v, and w represent displacements in the meridional, circumferential, and
normal directions, respectively, Ry and Rg are the two principal radii of curvature
of the shell, and r is the radius of the shell measured in a plane normal to the shell
axis. All three radii are regarded as functions of the meridional coordinate s, measured
along the shell from a reference edge.

According to Novozhilov (ref. 12), the six strain-displacement relations which
describe the local state of strain for a thin shell of revolution are as follows:

Membrane strain in meridional direction:

e =u'+ R; (1a)
Membrane strain in circumferential direction:
1w 1 W
2=7% 9+rru+R2 (1b)
In-plane shear strain:
_1ouw _,_ 1.,
e12—r39+v =TV (1c)
Change of curvature in meridional direction:
= -w'" -1_ ' - ._1_ R '
Ky = -W +R1u R12 1u (1d)

Change of curvature in circumferential direction:

1 azw 1 v r'w' 1 .

I A L S h "
Twist of the middle surface:
- Ltow 1 0w, 1 &u, 1., _1 .,
K12 T35t gt W+rR189+R2V g TV (1£)

8 L-6053

R~



For a shell which, in general, is composed of orthotropic layers, the strain energy
is given in reference 13 (p. 45) as follows:

B §§§(Clle1 +2C 98185 + Cygey® + Cppeqy )r do ds
+-1-S‘S‘D K2 4+ 2D, oK Ko + Doako2 + Dankeal)r dg ds
2 1171 127172 2272 66712

+ S‘Sl[KllelKl + Klz(elic2 + ezfcl) + Kggeoky + K66e12x12]r do ds (2)

where in equation (2) the integrations are taken over the shell surface and the following
definitions hold:

(1) C11, Cy9, Cga are membrane stiffnesses
(2) Dyy, Dy, D9y are flexural stiffnesses
(3) Cgg is the in-plane shear stiffness

(4) Dgg is the torsional shear stiffness

(5 Ki11, K12, K99, Kgg are stiffnesses due to the interaction between in-plane
strains and changes in curvature

All of these stiffnesses are, in general, functions of the meridional coordinate s. Ref-
erence 13 contains an excellent discussion of the derivation of the above stiffnesses for
shells having various numbers of layers and composed of materials having various types
of elastic properties.

The work in the present study is based on Novozhilov's strain-displacement rela-
tions (eqs. (1a) to (1f)), the energy expression of equation (2), and the definitions of the
stiffnesses in reference 13 with the following single exception. The strain K19 (called
7 in refs. 12 and 13) is defined by Ambartsumyan (p. 25) to be double the value of this
strain as defined by Novozhilov. Since the authors prefer to use Novozhilov's definition
of ky9, the value of Dgg used herein is four times the value of Dgg given in refer-
ence 13 and the value of Kgg is twice the value of Kgg given in reference 13.

For a shell of revolution vibrating in a natural mode with circular frequency w,
the three displacements u, v, and w can be expressed as follows:

u(s, 6,t) = u(s)cos ngel®t

v(s, 6,t) = v(s)sin ngelt (3)

w(s, 8,t) = w(s)cos ngel®t



The displacements from equations (3) are substituted into the strain-displacement :
relations of equa'tions (1). Substitution of the resulting strains into the strain-energy
expression of -equation (2) and integration with respect to 6 yields the strain energy in
terms of displacements. The amplitude of the strain energy for n #0 is as follows:

2 ' [ 2 2
T 't W v, W\/n r w n r w _n _r
A\ ZJ\[CH(u +—R1) + 2C12(u +——R1)(rv+—r u+——R2)+ sz(rv +5 u+—R2) + 066( ru+v' Tv)jlr ds

2 ' v \2 ' ' v\2
Do T wse D vy L e I Dep(Rw' -0y _ 0 ¥ _ d
22<r2 = W +rR1u + Dgg (7 W 3 w u-x»R2 r ds (4)

For n =0 the strain energy as given by expression (4) should be doubled. The suc-
ceeding developments are carried out on the assumption that n # 0 with the under-
standing that for n= 0 appropriate expressions should be doubled.

Representation of the Shell by Geometrically
Exact Finite Elements

The present analytical method follows the main steps of conventional finite-element
analysis. It is noted, however, that each element coincides exactly with a slice of the
actual shell. Hence, the elements are spoken of as '"geometrically exact elements."

A typical idealization of a shell of revolution is shown in figure 2. Counting ele-
ments from the reference edge, the following definitions are made:

K total number of elements ?
€x length of kth element, measured along meridian curve of shell
X coordinate inside kth element, measured along meridian from center of kth §
interval so that following relationship holds: “1
k.. -k 5 |
- FExsE (5)
b
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Sy distance along meridian from reference edge of shell to center of the
kth element

From the foregoing definitions for x and Sy it follows that

S=8 +X (6)

A numbering system has been adopted in which quantites such as displacement,

€ €
derivatives of displacements, and rotations at s = Sk - 2—k and s = s + 2—k are indi-

cated by subscripts k and k+l, respectively. Thus, for example, wy is the normal
€ €
. _ k . 3 : _ k
displacement at s = s - 5 and U .q is the meridional displacement at s = s + 5
Also, it is necessary to have a notation for the radius of curvature R1 at the locations
€

S=8.F —k. The symbols R and R represent the respective values.
k™ 5 Lk 1,k+1

Assumed Displacement Field for Element
As an approximation, the displacements u, v, and w are assumed to have the
following polynomial forms over the kth element:

= 2 3
W=ag b Ay X+ 2y 1 X7 4 ag X

= 2 3
u= bO,k + bl,kx + bz,kx + b3,kx @)
= 2 3
V= Cq i+ Cp X + Cg R X7+ Cg 1 X

where the a’'s, b's, and c's are undetermined coefficients. From equation (7) it fol-
lows that:

~
ao,g
1.k
("w ) 49 k
w! a3,k
" 0,k
Vgt
u = [x]ﬁ oo (8)
iy b2,k
v 3,k
LV'/ Eo’k
1,k
2.k
\03,k/

11



where

1 x x2 x2 00 0 0 00 0 0
01 2x 3%x2 0 0 0 0 0 O0 O O
00 2 6x 000 0 0O0 O O
[x]:oo 0 0 1 x x2 x3 00 0 0 (9)
00 0 0 01 2x 3kxk2 00 0 0
00 0 0 0O0OTOC O 1 x x2 x3
00 0 0 00 0 0 0 1 2x 3x2

Relationship Between Undetermined Coefficients and Displacements
and Rotations at Ends of Element

The rotation of the meridian curve relative to the unstrained direction is defined

as B and is given by

u
— w' - 10
pev - (10)
It follows that
u
' k
By =Wy - (11)
k Ry
and
u
[ k+1
B =W - — (12)
k+1 k+1 Rl,k+1

€

Inserting x = - z—k and x = into the appropriate locations in equation (8)

_k
2
results in the following relationship:

[ Wi raO,l:
uk al’k
Vk az’k
Bk 43 k
ul:( bO,k
A%

Wkli1 - [Ak:lﬁ b;:t (13)

U1 P3 x

Vil €0,k

Pr+1 1,k

U1 €9,k

_Vl'{"'l_J kc371€J
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where the elements of matrix Alg are given in table I. When equation (13) is inverted,
the following relationship results:

(ad,la (W)
al Kk 'llk
a9,k Yk
a3 P
20,1{ U
1,k$ _ [ ] Yk B
<b2,k W, (14)
03 k Uke1
o,k i+l
1,k Prr1
€2 k Ui+l
53,k (+ )

where
[ - (40 a

The elements of the inverse matrix [Tla are given in table II.

Formulation of Element Stiffness Matrix
From equation (4) the strain energy of an element may be written as follows:
r N
°x/? v
W'
WH
h;v, w', w'", u, u', v, vj [R] u ydx (16)

1]

pol=)

Jex/? e

where [R:] is a7 X 7 symmetric matrix, the elements of which are known functions of the
meridional coordinate x. The elements of [R] are listed in the appendix. Using equa-
tion (8) in equation (16) permits the strain energy to be written in terms of the undeter-
mined polynomial coefficients as follows:

v 80 TR o )

2 -ek/2

13



where
(30,k]
a1,k
a2,k
a3k
bo x
& = o a9
7T \Pgx
03
0,k
C1,x
C2 k

\CB’kJ
Vic= 360 [ as)

or

where

=] *;72 ) (R e (20)

Finally, use of the transformation expressed by equation (14) gives the strain energy as

vic= 30" [ e [ (21)

where

G={wk b @
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Inspection of equation (21) identifies the shell element stiffness matrix I:Sk] as

T
(5 = (71 "[C] [T] 23)
DEVELOPMENT OF CONSISTENT MASS MATRIX FOR
THE GEOMETRICALLY EXACT ELEMENT

If rotary inertia is neglected and if the shell is assumed to be vibrating in a natural
mode, the amplitude of the kinetic energy Eir for n#0 is

Eg = g w2 ‘S"Ek/zz ph(u2 +v2 4 Wz)r dx (24)
-€

k/

where ph is the mass per unit area of the shell. The quantity ph is a known function
of s and therefore of x. As with the strain energy, the expression for kinetic energy
must be doubled for n = 0.

Based on the assumed displacements of equation (7), the following relation may be
written:

«) - [0 @

where

x2 x3 00 0 0 0 0 0 O
0 1 x x2 x3 00 0 O (26)
0 00 0 0 1 x x2 x3

[¥)-

S O
o O W

0
0

Equation (24) can be rewritten in the form

€ /2 w
Ey = % wZS‘ k Lw, u, YJ[P] u dx 27
€y /2 v
where
phr 0 0
[P]=] o phr 0 (28)
0 0 phr

15



Using equation (25) with equation (27) yields

B = G FY ) @)

where

F =7 j:l;// z (¥ [P)[¥] ax (30)

In view of equation (14), equation (29) may be written as follows:

2
£ O] T 190 @
Therefore, the element mass matrix may be identified as [-Mla, where
Pad - (0 [ [ 2
DERIVATION OF MODAL EQUATIONS

In view of the numbering convention adopted for the elements, the second edge of the
kth element coincides with the first edge of the k+1st element. In this analysis, the fol-
lowing conditions of compatability are assumed to hold at each such juncture:

s ~N (‘ ~N
Wkt Wil
k41 N |
Vv v

k+1 K+1

* * for all k<K (33)
Pr+1 Pr+1
ulv<+1 u1,(+1
Q’i;+1 kth Vil | k+1st

element ~ - element

Of the six equalities in equation (33), the first four are standard. The last two, however,
are valid only for shells having continuous distributions of stiffness.

The total strain energy V and the kinetic energy E may be expressed as follows:

16

V=2Vk

k=1 _

(34)
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where Vi and Ej, are given in equations (21) and (31), respectively. If the summa-
tions of equations (34) are carried out and use is made of equation (33), the strain and
kinetic energies may be written as follows:

v =50 5K

(35)
_1 . .27/2T
E=zo%) M)
where’
S stiffness matrix, which is a symmetric positive semidefinite or positive
definite matrix of order 6(K + 1)
M mass or inertia n'latrix, which is a symmetric positive definite matrix of
order 6(K + 1)
y a vector containing all of the unknown displacements and rotations

In the present method, the matrices S and M are constructed by the well-known
procedure of superimposing element matrices, illustrated in figure 3. As the figure
shows, the superposition consists of placing appropriate shell element matrices in the
matrices S and M so that the matrix elements in the lower right 6 X 6 block of the
kth matrix add to the corresponding matrix elements in the upper left 6 X 6 block of the
k+1st matrix.

The modal equations for shells with no edge constraints may be derived by mini-
mizing the quantity E - V with respect to each of the variables in the vector y. This
minimization is equivalent to the following set of equations, 6(K + 1) in number:

AE-V) _ BE-V) _ o)
aWk =0 8Bk 0

2E-V) ﬁE_-'Y_Z=o> k=1,2,...,K+1) (36
uy auk

8E - V) _ AE-V)_
g ° Bvl'( OJ

Equations (36) can be expressed in the form

(816D - «*M)y = 0 (37)

17



Rigid edge constraints are incorporated by deleting from the stiffness and mass
matrices of equation (37) those rows and columns which correspond to displacements and
rotations that must vanish to satisfy the constraints. The form and character of equa-
tion (37) are not affected by the deletion of rows and columns from the matrices S and
M, except that S may become positive definite instead of positive semidefinite. Of
course, the order of matrices S and M is reduced.

Equation (37) determines 6(K + 1) natural frequencies and modal columns. The
computation of these frequencies and modes is a standard operation. However, for com-
pleteness, some of the reductions involved in the solution are given in the section which
follows.

The modal columns consist of values of displacements and rotations at each of the
K + 1 junctures on the shell. For many purposes a more detailed mode shape is
required. From equation (7) with x replaced by s - Sy the following equations can be
written for the mode shape within the kth element:

2 3)
W= agy+ al’k(s - sk) + az’k(s - Sk) + a3’k(s - Sk)

u=Dq + bl,k(s - Sk) + b2,k(s - sk)z + b3’k(s - Sk)3 (38)

3

V=Copt cl’k(s - sk> + cz’k(s - Sk)2 + cs’k(s - sk) )

The coefficients ag i through Cgy are computed by using equation (14).
’ b
COMPUTATIONAL METHOD AND COMPUTER PROGRAM

In this section, the details of the computing method are given. Each step is dis-
cussed and the flow of information is shown in block diagrams. The steps are intended to ;
be specific enough to allow a digital computer program to be written by using them as a
guide.

The basic organization of the computer program used in the present analysis is

shown in block diagram 1.

The input which describes the geometry of the shell and its physical properties is
first read, and stiffness and mass matrices referred to the coefficients of the displace-
ment polynomials are then computed. These matrices are transformed so that they are i
referred to the displacements and rotations at the ends of the element. When a stiffness
and a mass matrix have thus been computed for each element, the matrices are super- <
imposed to form the shell stiffness and mass matrices. I the shell has rigid edge

18 !



constraints, then appropriate rows and columns are deleted from the stiffness and mass

matrices to satisfy these constraints.

The stiffness and mass matrices then constitute

the ingredients to an eigenvalue problem which is solved for frequencies and modal

columns.

computed. The detailed mode shapes are then evaluated.

- ~{ neeur |

-

- » >y
' SF 0 o4
‘r——————-{ COMPUTE TRANSFORMATION MATR J

I I

COMPUTE ELEMENT STIFFNESS MATRIX AND ELEMENT
MASS MATRIX REFERRED TO UNDETERMINED
COEFFICIENTS OF DISPLACEMENT POLYNOMIALS

Ly
COMPUTE ELEMENT STIFFNESS MATRIX AND ELEMENT
MASS MATRIX REFERRED TO DISPLACEMENTS
AND ROTATIONS AT ENDS OF ELEMENT

ALL ELEMENT
MATRICES COMPUTED

SUPERIMPOSE EIEMENT MATRICES TO OBTAIN STIFFNESS
AND MASS MATRICES FOR AN UNCONSTRAINED SHELL

B |

DELETE APPROPRIATE ROWS AND COLUMNS FROM STIFFNESS
AND MASS MATRICES TO SATISFY EDGE CONSTRAINTS

_ 1

SOLVE EIGENVALUE PROBLEM FOR
FREQUENCIES AND MODAL COLUMNS

U
IBEQQVER COEFFIEEENT§“9F—DISPLAQEMENT POLYNOMIALSJ

] COMPU‘I‘E MODE SHAPES |

[OUTPUT FREQUENCIES AND MODE SHAPES |

From the modal columns, the coefficients of the displacement polynomials are

Block diagram 1.
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A more detailed block diagram (see block diagram 2) is shown.

)
=i INPUT

{2),
COMPUTE s, k=1,2,---Kl

[}
(3),
PRINT INPUT, sy, AND EDGE CONSTRAINT

— “CYCLE ON CIRCUMFERENTIAL WAVE NUMBER (n) |

(5) - =
* COMPUTE SIZE OF STIFFNESS AND MASS MATRICESJ

¢
* SET STIFFNESS AND MASS MATRICES TDrlERU!
e 1
D -
— = CYCLE ON ELEMENT NUMBER (k)]

8)y —
[ COMPUTE TRANSFORMATION MATRIX Tk’

_ [ CYCLE ON INTEGRATION STATION (q) |

(10,

LCOMPUTE COORDINATES OF INTEGRATION STATION (syq AND xkq)l

i
{11), - < -
COMPUTE MATRICES X(xiq): Y(xq), Risyq)s AND P(sy) |

(12 - - =
@MFUTE MATRIGES SUMC), AND SUMqu]

CYCLE ON
q COMPLETE

NO

t
() —
ADD MATRIX S, IN PROPER POSITION IN STIFFNES
L ®
— 1 .
, ADD MATRIX Mg IN PROPER POSITION IN MASS MATRIX M}
|

a

N(/CYCL)%

* k COMPLETE -~

?
y VES

U BELETE APPROPRIATE ROWS ANO COLUMNS FROM STIFFNESS
AND MASS MATRICES TO SATISFY ENGE CONSTRAINT
t
VI COMPUTE FREQUENCIES AND MODAL COLUMNS |
~ [] i
““TouTPUT FREQUENCIES AND MODAL COLUMNS'

NO ~MoDE SHAPES
WANTED

— 2 CYCLE ON MODE NUMBER (1)
(eu),
- “[TYCLE ON ELEMENT NUMBER (k)]
, - [ - .
““"[GOMPUTE GOEFFICIENTS OF DISPLACEMENT POLYNOMIALS ]

[

t
“[EOMPUTE u, v, AND w AT TINT LOCATIONS |

CYCLE ON
k COMPLETE

NO

NQ CYCLE ON

1 COMPLETE

NQ_~" CYCLE ON

n COMPLETE

Block diagram 2,




. A detailed discussion of the computing in each block of block diagram 2 is as

follows:
BLOCK 1:

The following input quantities are required:

K number of elements used to represent shell
€x length of kth element, where k=1,2, . . ., K
S0 meridional distance from origin of s to reference edge of shell

The following input functions are required:

1/R1,1/Ry reciprocals of principal radii of eurvature
r shell radius measured in a plane normal to the shell axis
r,Ry' meridional rates of change of r and Ry

C11,C12,C22,Cgg
Dq1,D12,D99,Dg¢ stiffnesses

K11-K12,K22,Kg6
[p}a mass per unit area
The following control numbers are required:
NBEG initial value of n
NLAST final value of n
Q number of integration intervals to be used within each. element

IPRINT if TPRINT = 0, intermediate matrices are not printed
if IPRINT # 0, intermediate matrices are printed

NMODE number of mode shapes to be computed
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IINT number of locations along each element at which mode shape is to be evaluated

ICASE edge constraint code (see table III)
BLOCK 2:
_ 1
k-1
1
Sk=SO+§ek+Zei k=2, ... K
i=1
BLOCK 4:
n = NBEG, NBEG + 1, . . ., NLAST
BLOCK 5:
KN = 6(K + 1)
BLOCK T:
k=1,2 .. .,K
BLOCK 8:

The elements of [Tk:], a 12 X 12 matrix, are given in table II.
BLOCK 9:

g=1,2, .. ., Q+1
BLOCK 10:

Each element is divided into Q equal intervals for the numerical integration.
There are then Q + 1 integration stations. The values of x and s at the qth integra-
tion station of the kth element are, respectively, defined as

-1
xkq=ek<qT-%) @=1,2, ..., Q+1)

and

q-1
Skq=sk+€k(T-%> (q=1,2,...,Q+1)

BLOCK 11:
The elements of [X_], [Y:', [P], and [R] are given in equations (9), (26), (28),
and (Al) to (A28), respectively. The matrices [X(xkq)] and F{(xkq):l are found by
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substituting Xkq in equations (9) and (26), respectively. The matrices [P(skq)J and
Ea(skq)] are found by substituting s, into equations (28) and (A1) to (A28), respectively.

:CkOIJ =7 ?((xkq)J T [R (sk q)] [X(xk q)]

[sumey| = %[ckl:l

[suMCyq| = [smvrck,q_lj + [ckcﬂ @=23, .. .Q
r 1
SUMCy, q +IJ = [SUMCk’Q] + §[Ck,Q +1]

i) = 72 (k)] [P(0c] (]

- 1
LSUMFkle - E[Fkﬂ

;SUMqu] = l:SUMFk’q_IJ + [qu] @=23, ... Q

[SUMFk,Q +1] = [SUMFkQ] + ';‘[Fk,Q+1]
—;C;:I = ESUMCk,QH]
LFk] = ESUMFk,Q+ﬂ
5= [ o[
= [ [

BLOCKS 14 and 15:

The manner in which the matrices (either stiffness or mass) are placed in the over-
all matrix is illustrated in figure 3.
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BLOCK 16:

Commonly encountered edge constraints along with the appropriate rows and

columns to be deleted from S and M are given in table IIL

(39)

BLOCK 17:
Compute by the threshold Jacobi method (ref. 14, p. 397) a modal matrix U and a

set of eigenvalues Aq, . . ., Ay for the matrix M. Then

X 0

A9
UTMU =D =

0 )\N
and

vTu =1
where
N order of matrix M

Since M is positive definite, all diagonal elements of D are positive.

identity matrix of order N

Compute:
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pl/2_

B = p~/2yTsyp~1/2

(40)

(41)

(42)




Compute Z, a modal matrix of B, by the threshold Jacobi method. Then

(0,2 0]
: 2
wo
zTRz = : (43)
0 Wil
L_ N_J
ZTZ =1

The values of wz are the squares of the circular frequencies.

Compute:

5= UD /2y (44)

The columns of & are the modal columns. After the computation of the modal columns,

insert zeros in the locations which correspond to rows and columns deleted from S
and M.

BLOCK 18:

The output consists of the following:

(1) Lists of circular frequency squared wz, circular frequency w, and
frequency f.

(2) For each mode, an array of displacements and rotations as follows:

Wy uy vy P uy vy

Wy ugy L) By ug Vo
WK+l YK+l YR+l PR+l YR+l VRel

Note that zeros again appear in the locations corresponding to deleted rows and columns
in S and M.

BLOCK 19:

i=1,2, ... NMODE
BLOCK 20:

k=12 ..., K
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BLOCK 21:

(ao,l? (¥ )
a1,k Uk
a9 k Yk
23 k Pk
Eo,k U
1,k _ Vi
\ b2,k? ) [Tk]<“’k+1
3 x Yer1
o,k Vk+1
1,k Prs1
c2,k Uker1
%35 Uiy

where the elements of Ty are given in table II.

BLOCK 22:

For the purpose of computing the detailed mode shapes, each element is divided
into IINT intervals. The number of locations at which the mode shape is to be evaluated
is IINT + 1. The value of s at the ith location of the kth interval is defined as Ski and

is given by
i-1_1 :
ski = Sk+ Ek(I_—_T = 'i) (1 = 1, e o ey IINT + 1; k = 1, v ey K)

The mode shape over the portion of the shell represented by the kth element is then com-
puted from:

W=agxt al,k(ski - Sk) + az,k(ski - sk)z + a3,k(ski - Sk)3
u =Dy +by (S - Sic) + Py y (S - Sk)2 +bg (S - Sk)3

v =Co et Cp k(B - Sk) * o k(i - Sk)z + 3 (S - Sk)3

The entire mode shape is then constructed by placing the portions end to end.

BLOCK 23:

The mode shape consists of arrays of u, v, and w.
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APPLICATIONS AND DISCUSSION

Description of Shells Analyzed

In order to ascertain the generality and efficacy of the present method for computing
natural frequencies, a number of applications were made. The following configurations,
shown in figure 4, were treated:

(1) An isotropic cylinder with freely supported edges investigated by Arnold and
Warburton (ref. 15) using an exact solution.

(2) An orthotropic cylinder with freely supported edges investigated by Hoppmann
(ref. 16) using an exact solution.

(3) An isotropic 120° conical frustum with both free-free and clamped-free edges,
investigated by Naumann (ref. 1) using a Rayleigh-Ritz analysis.

(4) An isotropic shell having positive Gaussian curvature with freely supported edges
investigated by Cooper (ref. 4) using a finite difference solution.

(5) An isotropic shell having negative Gaussian curvature with freely supported edges
also investigated by Cooper (ref. 4).

(6) An isotropic annular plate with free edges, investigated by Raju (ref. 17) using
an exact solution.

Correlation With Previous Investigations

Frequencies and mode shapes were computed for these shells, and the frequencies
were compared with those from existing solutions. Ten elements were used to represent
each shell. One hundred integration intervals within each element were used. In the cor-
relations to follow, the quantities to be compared are called frequency parameters. For
the cylinders, conical frustums, and annular plate, the parameter is the square of the
circular frequency. For the shells of positive and negative Gaussian curvature, the param-
eter is a dimensionless frequency defined in the appropriate tables and figures.

Frequencies based on the methods of previous investigators were obtained as follows:

(1) For the cylinders and the annular plate, the methods of the previous investigators
(refs. 15, 16, and 17) were automated for computation on a digital computer. Some of the
physical data of the orthotropic cylinder were obtained from reference 18.

(2) For the conical frustums, the computer program of Naumann (ref. 1) was used.

(3) For the shells of positive and negative Gaussian curvature, frequencies were
provided by Paul A. Cooper who obtained them by use of a computer program based on the
procedure described in reference 4.
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Presentation of Results

Calculations were performed with the present method for each shell using a range

on the circumferential wave number n of 0 through 10 because the minimum frequencies

for the shells were in this range. Since all calculations by the present method were based
on representations by 10 elements, approximately 60 modes per value of n were gener-
ated. Because presentation of all these modes appeared impractical, a decision had to be
made as to which modes to present for each shell. A main consideration in selection of

a mode for presentation was whether a calculation of the frequency parameter was avail-
able from one of the methods of the previous investigators for comparison,

Minimum frequencies.- The minimum frequency parameter for each value of n
was available for every shell. Correlations for minimum frequency parameters are pre-
sented in table IV. The information in this table is shown graphically in figures 5 to 11.
The frequency parameters in these figures should be viewed both as results of the present
analysis and as results of the previous investigators since the differences are too small
to be seen on the plots. Some experimental results from references 16 and 1 are shown

in figures 6 and 7, respectively.

Higher modes of cylinders.- The selection of which higher frequency parameters to
present was made for each shell on an individual basis. For the cylinders, the solutions
of Arnold and Warburton and of Hoppmann give exact frequency parameters for all modes.
In order to describe which of these modes were selected for correlation, it is necessary
to discuss briefly the nature of the exact mode shapes for the freely supported cylinders.

The exact mode shapes have the form:

mzs

I, cos né

u= Amnp COS

sin ng

_ . mps
v = Bpyp sin

mys
TS cos n@

w = Cmn sin

where m takes on integer values and Ap,,, Bmp, and Cp, are constants which char-

acterize a mode.

Thus, m is equal to the number of nodal circles in u or one plus the number of
nodal circles in v or w. For agiven pair of values for m and n, three modes are
possible. Each mode corresponds to a different ratio of Amn : Bmn : Cmp. For each
value of n, modes were arbitrarily selected for values of m from 1to 5. The cor-
responding frequency parameters computed by the present analysis were identified by
inspecting the computed mode shapes and counting nodal circles. Correlations for the
higher frequency parameters of the cylinders are presented in tables V and VI for the
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values of n and m considered. TFor the purpose of illustration, the variations with m
of the three frequency parameters associated with each value of m are shown in fig-
ures 12 and 13 for n = 2.

Higher modes of conical frustums.- For the conical frustums, a large number of

frequency parameters were available from Naumann's Rayleigh-Ritz procedure for com-
parison with results of the present analysis. A correlation was made for n =2, Modes
were selected for presentation as follows: First, all modes having from one to five nodal
circles in the w-displacement were examined. For the freely supported cylinders, there
were exactly three modes having a given number of circumferential waves and a given
number of circular node lines in the w-displacement. For the conical frustums, there
are usually not exactly three. For purposes of presenting irequencies in the present
analysis, an arbitrary selection of modes was made. If there are three or less modes
corresponding to a given number of nodal circles in w, all are presented. If there are
more than three, only three are presented. To avoid any misunderstanding, the following
table tells which modes of the conical frustums having five or less nodal circles in w
are not presented:

Nodal circles Nodal circles Nodal circles
in w in u in v
Free-free 1 0 0
Clamped-free 0 1 0
3 0 1
4 2 5
3 4 7
4 8
i 6

The correlations for the higher frequency parameters of the conical frustums for n = 2
are shown in tables VII and VIII. This information is also shown graphically in figures 14
and 15. As in figures 5 to 11, the results in figures 14 and 15 can be interpreted as either
the results of the present analysis or the other investigation since the results are coinci-
dent for plotting purposes. As a matter of interest, the mode shapes from the present
analysis corresponding to the frequency parameters in figures 14 and 15 are shown in fig-
ures 16 and 17.

Higher modes of shells having positive and negative Gaussian curvature.- For the
shells of positive and negative Gaussian curvature, no higher frequency parameters were

available from Cooper's method for correlation. As a matter of interest, some higher
frequency parameters computed by the present analysis for these shells are presented for
n=2 in tables IX and X. Specifically, frequency parameters for modes having four or
less circular node lines in w are presented. As was the case with the cylinders, there
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are exactly three frequencies corresponding to each number of circular node lines in w.
The variation of the three frequency parameters with the number of circular node lines
in w is shown in figures 18 and 19. The mode shapes corresponding to the frequency
parameters in figures 18 and 19 are shown in figures 20 and 21.

Discussion of the Applications

The correlations in tables IV to VIII can be summarized as follows: All frequency
parameters presented for the two cylinders, the shells of positive and negative Gaussian
curvature, and the annular plate showed agreement with the results of the previous inves-
tigators through at least the second significant figure. For the cylinders, the agreement
was in most cases through six significant figures. For the free-free conical frustum,
most frequency parameters predicted by the present analysis agreed with the frequency
parameters from the method of reference 1 through at least the second significant figure.
The exceptions were the ninth, eleventh, and twelfth values of w2 listed in table VII in
which the frequency parameters from the present analysis were lower in the second sig-
nificant figure. It is noted in reference 19 that under certain conditions (that are met by
the present analysis) the finite-element method is equivalent to the Rayleigh-Ritz method
in that both methods give upper bounds to the exact frequencies. Therefore, it follows
that the frequency parameters predicted by the present analysis are better approxima-
tions to the corresponding exact frequency parameters than are the frequency parameters
from the method of reference 1. It is believed that the first significant figure in the three
frequency parameters is probably correct and that the lack of agreement for these fre-
quency parameters does not indicate any significant inaccuracy in the results of the pres-
ent analysis. For the clamped-free conical frustum, most frequency parameters pre-
dicted by the present analysis again agreed with the frequency parameters from the
method of reference 1 through at least the second significant figure. The exceptions in
this instance are the minimum frequency parameters in table IV for n=1, 2, and 3 and
the eighth and ninth values of the frequency parameters w2 listed in table VIIL. For the
eighth and ninth values of w? listed in table VIII, the present analysis predicted fre-
quency parameters which were lower than the corresponding values from the method of
reference 1. As with the free-free conical frustum, these differences occurred in the
second significant figure. It is again concluded that the present results are closer to the
exact frequency parameters. In the case of the noted disagreement in table IV, the fre-
quency parameters from the present analysis are higher (in the first significant figure
for n = 2) than the corresponding result from the method of reference 1. By reasoning
similar to that used in the preceding discussion, it is concluded that the present analysis
is somewhat inaccurate for the minimum frequency parameters of the clamped-free coni-

cal frustum for n=1, 2, and 3.

30



No dependence of accuracy on the circumferential wave number was noted. Further-
more, only slight degradation of accuracy was noted as modes with increasing numbers of
circular node lines in w were considered. In the latter instance, significant degrada-
tion might have been expected. The only notable degradation of accuracy was with regard
to edge constraint. The frequency parameters of the conical frustum with a clamped edge
(tables IV and VIII) showed worse correlation with the results of the previous investiga-
tions than did the frequency parameters of shells with free or freely supported edges.

‘For the reasons stated in the introduction, no correlations are presented for mode
shapes. However, a cursory correlation between the mode shapes from the present anal-
ysis and such mode shapes as were available from the methods of the previous investiga-
tors was made. The computed mode shapes for the cylinders appeared to coincide with
the exact mode shapes which are sine and cosine curves. The computed mode shapes
corresponding to some of the minimum frequencies of the free-free conical frustum
appeared to agree with those mode shapes published in reference 1. The authors also
made some correlations of mode shapes for a few of the higher modes of the conical
frustums obtained by the method of reference 1. For these mode shapes the present anal-
ysis and the method of reference 1 appeared to agree very well.

Computational Efficiency and Reliability

As was stated in the introduction, two major objectives of the computer program
were: (1) machine efficiency, that is, the ability to compute quickly a large number of
frequencies and mode shapes; (2) reliability, that is, capability of predicting every mode
in the range of the frequency spectrum of interest. Machine efficiency was achieved.
Typically, over 600 frequencies and modal columns are computed in less than 15 minutes
on the Control Data 6600 computer system. Reliability was not proven but is indicated by
the correlations obtained by the exact theory for the cylinders. The eigenvalue problems
generated were well conditioned, since only single-precision arithmetic was required for
accurate solution.

Limitations

Experience with this computer program and with the correlations are believed to
indicate that the major limitation of the program in its present form lies in the approxi-
mation of the normal displacement w by a third-order curve over each element. (See
eq. (7).) From the assumption that w is a third-order curve in each element, it follows
that:

(1) Certain moment resultants are discontinuous across junctures between elements.
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(2) The moment distributions may be seriously in error if the moment distribution
in a region represented by a single element has a variation of higher order than linear.

Some results of modal stress calculations for modes with large moment gradients
are suspected to be in error. Furthermore, the errors previously noted in some mini-
mum frequencies of the clamped-free conical frustum are believed to stem from the third-
order approximation since a steep moment gradient is known to occur near a clamped
edge. A possible remedy is to increase by two the order of polynomial representation of
w and to require continuity of curvature across element junctures.

Another limitation which is emphasized is the restriction of the present analysis to
shells for which the shell surface does not intersect the axis of the shell. Thus, this
analysis is not applicable to configurations such as a hemisphere.

Finally, the reader is reminded that the analysis is restricted to shells with con-
tinuous stiffness distributions as noted from the conditions imposed by equation (33).
This restriction is easily removed by replacing the last two equalities of equation (33) by
appropriate conditions on the continuity of stress and moment resultants across element

junctures.

CONCLUDING REMARKS

An analytical procedure based on the finite-element method is developed for com-
puting natural frequencies and mode shapes of thin shells of revolution. The shells may
have general meridional curvature and orthotropic elastic properties. The details of a
computer program based on this procedure are described.

A distinguishing feature of the procedure is that it employs an element which is
geometricall§7 exact in that the actual geometry of the shell being analyzed is input to the
analysis in the form of functions. The displacements of the shell within an element are
approximated by third-order polynomials which are defined over the element. Inter-
element compatibility is expressed by equating displacements and rotations at all junc-
tures between elements. The required integrations for computing the element stiffness
and mass matrices are performed numerically by using the trapezoidal rule. The stiff-
ness and mass matrices for the complete shell are formed by superposition. Edge con-
straints are incorporated by deleting rows and columns from the complete shell stiffness
and mass matrices. The resulting symmetric eigenvalue problem is solved by a standard
method.

The computer program has been applied to several shells:
(1) An isotropic cylinder with freely supported edges
(2) An orthotropic cylinder with freely supported edges
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(3) A 1200 conical frustum with free-free edges

(4) A 120° conical frustum with clamped-free edges

(5) A shell having positive Gaussian curvature with freely supported edges
(6) A shell having negative Gaussian curvature with freely supported edges
('Y An annular plate with free-free edges

The main results and conclusions are a;s follows:

1. Very generally, excellent agreement was noted between frequencies from the
present analysis and frequencies from the previous investigations.

2. The only inaccuracies of the present analysis which might be considered signifi-
cant occurred in three minimum frequencies of the clamped-free conical frustum. This
inaccuracy is believed to stem from the inability of third-order polynomials to conform
to a steep stress gradient near a clamped edge, and consequently increasing the repre-
sentation of the normal-displacement component to a fifth-order polynomial would be
expected to result in overall excellent agreement.

3. The computer program performs with very short running times and no modes are
overlooked in computation.

4. The natural frequencies and mode shapes from this method appear to constitute
reliable input for forced response calculations for structures involving shells of
revolution.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 3, 1968,
124-08-05-08-23.
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APPENDIX

ELEMENTS OF MATRIX [R]
ESee eq. (16)]

The elements of matrix [R] are as follows:

2,02 2
Riq = Ciyr 5 Cyor 0221‘ D22n4 Dggn (r") 2K12n 2K22n2
11=—5"+27 R 2 3 * 3 ' Ry | R (a1)
Ry 192  Rg T T rRq rRo
Dzzr'nz D66n2r' K12r' K22r'
Ripg=Ro1=-—F5—-—S—-"—F® " ""&r (A2)
r T 1 2
D12n2 Kllr Klzr
R13=Rgy = - - - (A3)
31 T R1 Ry
Cyor' Coor' D n2R! Door'n?2 D nlr' K..R:r Kior'
Ry, = Ry = 220, G2zt D1aVRy  Daa 66™ T _ Eifyr P12
3
Ry Ry rR2 r2Ry r2Ry Ry R,2
' 2 ' 2.
_ KiorRy . K22n T’ N K22r . K66n r (A1)
R12Ry r2 RiRy r2
2 2
Ciar  Cror Dyon® Kyt Kypn® Kyor
Ry5=Rgy = + + + + + (A5)
15 1 Rq Ry rRq R12 r RiRy
3 n2 3
R -R _ C12n szn D22n D66n(r ) Klzn Kzzn Kzzn
16~ 61" R " Rt Top T2 *RR 5 T L2
1 2 r2Ry rZRy 1Ry r Ry
2
Kppn(r")
+ 66 (A6)
r2
D66nr' K66nr'
Rin=Rn=-—g,~ " "r (A7)
n2 2
Dzz(r ) D66n
Rpp=—F—*+— (48)
Rg3 = Rgy = Dypr’ (A9)
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APPENDIX

D12R'1r' _ D22(r')2 _ D66n2 . Kzz(r')z _ K66n2

R =R = Al10
24 = Rq2 % TRy TRy T T (A10)
Dlzr'
Rgg = Rgg = - Ry - K12r' (A11)
Dzznr‘ D66r'n Kzznr' K66nr'
Rop = Rpg = ~ - - - Al12
26 62 rRy TRy T T ( )
D66n
D,,R!r Dyor!
Rgq = Ry3 = ———1; 21 - Kyor' - :.{2 (A15)
1 1
Dllr
1
D121'1
Rgn = Ryg =0 (A18)
f 2 2 1 2 LI ' 2 2
Rys - Caa(r)”  Ceen” | Dyy(Ry)"r 2DgpRyr , D22(r)”  Degn
T r
R14 R13 rRl2 rR12
2Kypr'R)  2Kyo(r)?  2Kgen®
- 5+ + (A19)
Ry rRyp rRq
D{{Rir Dior' K, Rir 2Kor

3 2 2 R
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Cgor'n  Cggnr' DygnRy Dgonr'  Dger'n KygnRj
+ - -

Ryp = Rpy = +

Koonr' Koonr' Kuppnr' Ki.nr'
22 + 22 + 66 + 66

+

rRl rRz rRl rRz

Dggn Kggn Kgen

=R =-C - -
Rgn = Roy 66" " RyRy, Ry Ry

D1 1T

3
R,

+

Rgg = CyyT +

2K11r

Ry

Rgg = Rgg = Cygn +

Rgy =Ryg =0

D12n K12n . K12n

+

2 "2 2 2 2 n2
C22n 066(1' ) N Dzzn . D66(r ) . 2K22n N 2K66(I‘ )

R, = +
66 r r I‘R22 I‘R22 I‘R2 I'R2
Dpoor' 2Kgar!
66 66
R67 = R76 = —CGGI" - -
R22 Ro
Depr  2Kgpr
R77 = C66r + i + 66
Ry,2 Ry
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TABLE II.- ELEMENTS OF MATRIX [Tk]
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ICASE

10

11

12

13

14

15

16

Description

Free-free
Free—freely supported
Freely supported—free
Free—simply supported
Simply supported—iree

Free-clamped
Clamped-free

Freely supported—
freely supported

Simply supported—
simply supported

Clamped-clamped

Freely supported—
simply supported

Freely supported—
clamped

Simply supported—
freely supported

Simply supported—
clamped

Clamped—
freely supported

Clamped—
simply supported

TABLE II.- EDGE CONSTRAINTS

Equations for edge constraint

None
w(L) = w(L) = 0
v(0) = w(0) = 0
w(L) = (L) = w(L) = 0
(0) = v(0) = w(0) = 0
w(L) = v(L) = w(L) = B(L) = 0
u(0) = v(0) = w(0) = B(0) = 0

v(0) =w(0) =0
v(L) = w(L) =0

u(0) = v(0) =w(0) =0
u(L) = v(L) =w(L) =0

u(0) = v(0) = w(0) = g(0) = 0
u(L) = v(L) = w(L) = B(L) = 0

v(0) = w(0) = 0
u(L) = v(L) = w(L) = 0

v(0) =w(0) =0
u(L) = v(L) = w(L) = (L) = 0

u(0) = v(0) =w(0) =0
v(L) =w(L) =0

u(0) = v(0) = w(0) = 0
u(L) = v(L) = w(L) = g(L) = 0

u(0) = v(0) = w(0) = g(0) = 0
v(L) = w(L) = 0

u(0) = v(0) = w(0) = B(0) = 0
w(l) =v(L) =w(L) =0

Rows and columns deleted

None
(6K + 1), (6K + 3)
1,3
(6K + 1), (6K + 2), (6K + 3)
1,2,3
(6K + 1), (6K + 2), (6K + 3), (6K + 4)
1,2,3,4

1, 3, (6K + 1), (6K + 3)

1, 2, 3, (6K + 1), (6K + 2), (6K + 3)

1, 2, 3, 4, (6K + 1), (6K + 2), (6K + 3), (6K + 4)

1, 3, (6K + 1), (6K + 2), (6K + 3)

1, 3, (6K + 1), (6K + 2), (6K + 3), (6K + 4)

1, 2, 3, (BK + 1), (6K + 3)

1,2, 3, (6K + 1), (6K + 2), (BK + 3), (6K + 4)

1,2, 3,4, (6K + 1), (6K + 3)

1,2, 3, 4, (6K + 1), (6K + 2), (6K + 3)
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TABLE IV.- COMPARISON OF MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS

Circumferential

wave number,
n

© 0 T U R WN = O

1

[=]

Circumferential
wave number,
n

|
1

qumcﬂ)hw[\?hio‘

—_
(=]

42

Freely supported—freely supported cylinder
Isotropic

Present analysis

3.86111 x 108
1.17339 x 108
2.25430 x 107
5.95827 x 107
2.17401 x 106
1.11765 x 106
9.09145 x 10°
1.11505 x 108
1.64300 x 108
2.50514 x 106
3.75508 x 106

w2, sec-2

Reference 15
3.86111 x 108
1.17339 x 108
2.25430 x 107
5.95827 x 107
2.17401 x 108
1.11765 x 106
9.09145 x 109
1.11505 x 106
1.64300 x 106
2.50514 x 106

3.75508 x 106

w2, sec~2

Present analysis

8.01167 x 108
1.09559 x 108
2.15504 x 107
5.53142 x 107
1.85439 x 108
4.74829 x 108
1.01231 x 109
1.90756 x 109
3.29043 x 109
5.31084 x 10°
8.13868 x 109

120° conical frustum

Free-free

Present analysis

0

0

2.8727 x 102
1.9154 x 103
6.3759 X 103
1.5047 x 104
2.7824 x 104
4.4394 x 10%
6.6322 x 104
9.5417 x 104
1.3333 x 10°

{ Reference 1
0

0

2.8725 x 102
1.9149 x 103
6.3728 x 103
1.5038 x 104
2.7815 x 104
4.4387 x 10%
6.6310 x 104
9.5394 x 104

1.3329 x 109

Present analysis

2.5380 x 104
3.7049 x 10°
7.2558 X 10%
2.2666 x 104
1.3694 x 104
1.7636 x 104
2.8529 x 104
4.4524 x 104
6.6338 x 104
9.5418 x 104
1.3333 X 109

Orthotropic

Clamped-free

Reference 16

8.01167 x 108
1.09559 x 108
2.15504 X 107
5.53142 X 107
1.85439 x 108
4.74829 % 108
1.01231 x 10°
1.90756 x 109
3.29043 x 109
5.31084 x 10°
8.13868 x 109

Reference 1

2.5378 x 104
3.6125 x 105
6.9075 x 104
2.1638 x 104
1.3434 x 104
1.7611 x 104
2.8520 x 104
4.4507 x 104
6.6324 x 104
9.539 x 104
1.3329 x 10°




TABLE IV.- COMPARISON OF MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS — Concluded

Circumfierential
wave number,
n

©O© 0 I W= O

=
o

Circumferential
wave number,
n

O 0 I U v WN - O

—
o

Dimensionless frequency parameter, = wRE(p/ EY(1 - p.z)]l/ 2

Shell of positive Shell of negative

Gaussian curvature, Gaussian curvature,

freely supported edges freely supported edges

Present analysis Reference 4 Present analysis Reference 4

-——- -——— 0.640 0.640

0.411 0.412 .368 .368
.360 .362 .157 .157
.340 .340 .0628 .0628
.331 .331 .01970 .01972
.327 .327 .00779 .00784
.324 .324 .01923 .01924
.323 .322 .02804 .02805
.322 .321 .02580 .02609
.321 .321 .0240 .0241
.321 .321 .0292 .0292

w2, sec-2

Plates

Present analysis

86.74
295.8
18.24
130.5
443.8
1087
2 215
4 003
6 660
10 415
15 532

Reference 17

86.74
295.8
18.24
130.5
443.8
1087
2 215
4 003
6 660
10 415
15 532
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TABLE V.- CORRELATION OF FREQUENCY PARAMETER w? OF FREELY SUPPORTED CYLINDER

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15

1.950193 x 109
9.00656 x 108
3.86111 X 108

1.53415
57961
54445

4.
1.
1.58626 X
9.
3.

x 169
x 109
X 109

109
10°
109
10°
108

96586 X
X
X
X
x 109
X
X
X

47507

1.59995
1.75668
6.17832
1.60572 x 109
2. 1010
9. 109

73552
65539

{
{
|
{
{
{
{
{
{
{

106
109
1010

95827 X
15055 X
85829 X

x 107
x 109

108

5.
6.

1.
6.66567
7.56577
2.15282 x
2.13124 X
9.67973 x 109
2.66367 x 1010
4.
1.
3.

10749 x 108
24380 x 1010
x 1010

6.12256 x 108
4.36214 x 1010
1.58850 x 1010

39988

44

Present analysis

n=0

Reference 15

1.950193 x 109
9.00656 x 108
3.86111 x 108

1.53415 x 109
4.47961 x 109
1.54445 x 109

1.58626
9.96570
3.47500

x 109
x 109
x 109

x 109
x 108
x 109

1.59995
1.75655
6.17778

x 109
x 1010
x 10%

1.60571
2.73485
9.65279

x 108
% 109
x 1010

5.95827
6.15055
1.85829

6.66563
7.56576
2.15282

2.13118
9.67963
2.66367

4.10708
1.24372
3.39978

x 107
x 109
x 1010

x 108
x 109
x 1010

x 108
x 1010
x 1010

x 108
x 1010
% 1010

6.12119
4.36131
1.58813

w2, sec-2

Present analysis

1.17339
1.41017
4.09860

5.83357
2.78500
6.67902

1.02452
1.18772
4.51464

1.26785
1.94100
7.05640

1.39208
2.91681
1.04453

2.17401
1.04833
3.09779

2.70603
1.18310
3.40266

1.00599
1.39500
3.92032

2.22493
1.67738
4.65653

3.72329
2.02963
5.61740

n=1

x 108
x 109
x 109

x 108
x 109
x 109

x 109
x 1010
x 109

x 109
x 1010
x 109

x 109
x 1010
X 1010
n=4
x 106
x 1010
x 1010

107
1010

1010
108

1010
1010
108

1010
1010
108

1010
x 1010

X X X X X X X X X X x

Reference 15

108
109
10°

1.17339 X
1.41017 X
4.09860 X

5.83356 x 108
2.78500 x 109
6.67902 x 109

1.02451 x 10°
1.18772 % 1010
4.51457 x 109

1.26782 x 109
1.94088 x 1010
7.95582 x 109

109

1010
1010

1.39201 x
2.91617 X
1.04425 X

106
1010
107
1010
1010
108
1010
1010

2.17401 X
1.04833 X
3.09779 X

2.70601 x
1.18310 X
3.40266 X

1.00594 x
1.39499 X
3.92031 X

2.22462 x 108
1.67733 x 1010
4.65745 x 1010

3.72208 x 108
2.02922 x 1010
5.61693 x 1010

Present analysis

2.25430 x 107
3.1160 x 109
9.65443 x 109

1.90073 x 108
4.59200 x 10°
1.24328 x 1010

4.75299 x 108
6.60278 x 109
1.75057 x 1010

7.55161 x 108
2.49175 x 1010
9.22905 x 109

9.73034 x 108
3.46020 x 1010
1.25978 % 1010

n=2>5

1.11765 x 108
1.60902 x 1010
4.68747 x 1010

1.27354 x 107
1.73881 x 1010
4.99865 x 1010

5.13733 % 107
1.94829 x 1010
5.52220 x 1010

1.24623 x 108
2.23239 x 1010
6.26256 x 1010

2.27379 x 108
7.22276 x 1010
2.58897 x 1010

n=2

Reference 15

2.25430 x 107
3.116  x 109
9.65443 x 10°

1.90073 x 108
4.59200 x 109
1.24328 x 1010
4.75290 x
6.60268 x 109
1.75056 x 1010
7.55117 x 108
2.49164 x 1010
9.22834 x 109
108
1010
1010

108

9.72909 X
3.45961 X
1.25946 X

108
1010
1010
107
1010
1010
107
1010
1010

1.11765 X
1.60902 X
4.68747 %

1.27352 x
1.73881 X
4.99865 X

5.13704 x
1.94828 X
5.562219 X

1.24601 x 108
2.23230 x 1010
6.26249 x 1010

2.27282 x 108
7.22237 x 1010
2.58853 x 1010




N e N T o N el

TABLE V.- CORRELATION OF FREQUENCY PARAMETER w2 OF FREELY SUPPORTED CYLINDER

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15 — Concluded

Present analysis

n

9.09145 x 105
2.29598 x 1010
6.62863 x 1010

6.96234 % 108
2.42233 x 1010
6.94380 x 1010

2.85635 x 107
2.62905 x 1010
7.47182 x 1010

7.33039 x 107
2.91264 x 1010
8.21554 x 1010

1.42224 x 108
3.27094 x 1010
9.17738 x 1010

2.50514 x 108
5.11057 x 1010
1.45653 x 1011

3.91728 x 106
5.23161 x 1010
1.48862 x 1011

9.27100 x 106
5.43242 x 1010
1.54218 x 1011

2.17922 % 107
5.71189 x 1010
1.61727 x 1011

4.41539 x 107
6.06912 x 1010
1.71401 x 1011

Reference 15
=6

9.09145 x 105
2.29598 x 1010
6.62863 x 1010

6.96226 x 106
2.42233 x 1010
6.94380 x 1010

2.85615 X 107
2.62903 x 1010
7.47182 x 1010

7.32876 x 107
2.91254 x 1010
8.21548 x 1010

1.42150 x 108
3.27049 x 1010
9.17704 % 1010

2.50514 x 108
5.11057 x 1010
1.45653 x 1011

3.91725 x 108
5.23162 x 1010
1.48862 x 1011

9.27021 x 106
5.43241 % 1010
1.54218 x 1011

2.17854 X 107
5.71180 x 1010
1.61727 x 1011

4.41191 x 107
6.06864 x 1010
1.71401 x 1011

wz, sec™2

Present analysis

Reference 15

n="7

1.11505 x 108
3.10870 x 1010
8.92182 x 1010

4.56899 x 108
3.23267 x 1010
9.23964 x 1010

1.74106 x 107
3.43697 x 1010
9.77096 x 1010

4.56222 x 107
3.71926 x 1010
1.05176 x 1011

9.20757 x 107
4.07780 x 1010
1.14813 x 1012

n=

3.75508 % 108
6.29952 x 1010
1.79157 x 1011

4.75813 x 108
6.41965 x 1010
1.82376 x 101!

8.48546 x 108
6.61922 x 1010
1.87746 % 1011

1.72993 x 107
6.89750 x 1010
1.95275 x 1011

3.34003 x 107
7.25384 x 1010
2.04966 x 1011

1.11505 x 106
3.10870 x 1010
§.92182 x 1010

4.56892 x 108
3.23267 x 1010
9.23964 x 1010

1.74092 x 107
3.43696 x 1010
9.77006 x 1010

4.56103 x 107
3.71916 x 1010
1.05176 x 1011

9.20184 x 107
4.07733 x 1010
1.14812 % 1011

10

3.75508 x 108
6.29952 x 1010
1.79157 x 101!

4.75810 x 108
6.41965 x 1010
1.82376 x 1011

8.48484 x 108
6.61921 % 1010
1.87746 x 1011

1.72939 x 107
6.89741 x 1010
1.95272 % 1011

3.33725 x 107
7.25336 x 1010
2.04960 x 1011

Present analysis

1.64300 x 108
4.04694 x 1010
1.15673 x 1011

3.77396 x 108
4.16922 x 1010
1.18870 x 1011

1.18524 x 107
4.37157 x 1010
1.24207 x 1011

3.03024 x 107
4.65240 x 1010
1.31698 x 1011

6.21633 x 107
5.01043 x 1010
1.41378 x 1011

n=28

Reference 15

1.64300 % 108
4.04694 x 1010
1.15673 x 1011

3.77391 x 108
4.16922 x 1010
1.18870 x 1011

1.18514 % 107
4.37156 x 1010
1.24207 x 1011

3.02935 % 107
4.65231 % 1010
1.31698 x 1011

6.21190 % 107

5.00996 x 1010
1.41353 x 1011
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TABLE VI.- COMPARISON OF FREQUENCY PARAMETER w2 OF AN ORTHOTROPIC CYLINDER
WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS

o

8.37907 % 10°
2.00989 x 109
8.01167 x 108

6.73909 x 109
1.00045 x 1010
3.20467 x 109

7.77840 x 109
1.95747 % 1010
7.21064 % 109
{ 7.97769 x 109

3.42687 x 1010
1.28198 x 1010

8.18535 x 109
5.32836 x 1010
2.00346 x 1010

46

5.53142 % 107
4.77293 x 1010
8.54639 x 1010

1.16635 x 108
4.85733 % 1010
9.33321 % 1010

3.18483 x 108
5.04809 x 1010
1.05863 x 1011

7.36447 x 108
5.37677 x 1010
1.22697 x 1011

1.40603 x 109
1.43650 x 1011

5.86279 % 1010

Present analysis [

n=0

n=3

AND EXACT METHOD OF REFERENCE 16

Reference 16

8.37907 % 109
2.00989 x 10°%
8.01167 x 108

6.73909 x 109
1.00045 x 1010
3.20467 x 109

7.77835 % 10°
1.95744 x 1010
7.21050 x 10%

7.97727 % 109
3.42661 x 1010
1.28198 x 1010

8.18303 x 109
5.32704 x 1010
2.00292 x 1010

5.53142 x 107
4.77293 x 1010
8.54639 x 1010

1.16633 x 108
4.85733 x 1010
9.33321 x 1010

3.18432 x 108
5.04807 x 1010
1.05864 x 1011

7.35971 % 108
5.37662 X 1010
1.22696 x 1011

1.40340 x 109
1.43641 x 1011
5.86202 x 1010

w2, sec-2

Present analysis

n=1

1.09559 x 108
6.98986 x 109
1.76461 x 1010

9.33628 x 108
1.05341 x 1010
2.20377 x 1010

2.47618 x 109
3.14843 x 1010
1.41632 x 1010

4.14783 x 109
4.59040 x 1010
1.85782 x 1010

5.52799 x 109
6.48262 x 1010
2.47182 x 1010

n=4

1.85439 x 108
8.43972 x 1010
1.43693 x 1011

2.30036 x 108
8.44403 x 1010
1.52391 x 1011

3.55839 x 108
8.52479 x 1010
1.66119 x 1011

6.21337 x 108
8.73284 x 1010
1.84339 x 1011

1.08415 x 109
9.09817 x 1010
2.06739 x 1011

Reference 16

1.09559 % 108
6.98986 x 109
1.76461 x 1010

9.33624 % 108
1.05341 x 1010
2.20377 x 1010

2.47610 x 109
3.14841 x 1010
1.41630 x 1010

4.14727 % 109
4.59018 x 1010
1.85770 x 1010

5.52532 x 102
6.48142 x 1010
2.47122 x 1010

1.85439 x 108
8.43972 x 1010
1.43693 x 1011

2.30034 x 108
8.44403 x 1010
1.52391 x 1011

3.55792 x 108
8.52477 x 1010
1.66119 x 1011

6.20889 x 108
8.73268 x 1010
1.84338 x 1011

1.08160 x 10°
9.09739 x 1010
2.06733 x 1011

Present analysis

n

2.15504 x 107
2.18774 x 1010
4.35227 % 1010

1.96173 % 108
2.39218 x 1010
5.00686 x 1010

7.07832 x 108
2.70286 x 1010
6.10771 x 1010

1.56673 x 109
7.64494 x 1010
3.13158 x 1010

2.66133 x 109
9.60704 x 1010
3.70574 x 1010

4.74829 x 108
1.31754 x 1011
2.18346 x 1011

5.25903 x 108
1.31272 x 1011
2.27577 x 1011

6.44414 x 108
1.31219 x 1011
2.42199 x 1011

8.74824 x 108
1.32196 x 1011
2.61593 x 1011

1.27123 x 109
1.34611 x 101!
2.85407 x 1011

1

2

5

Reference 16

2.15504 x 107
2.18774 x 1010
4.35227 x 1010

1.96170 x 108
2.39218 x 1010
5.00686 x 1010

7.07771 % 108
2.70284 x 1010
6.10769 x 1010

1.56621 x 102
7.64474 x 1010
3.13143 x 1010

2.65858 x 109
9.60598 x 1010
3.70507 x 1610

4,74829 x 108
1.31754 x 1011
2.18346 x 1011

5.25901 x 108
1.31272 % 1011
2.27577 x 1011

6.44369 x 108
1.31219 x 1011
2.42198 x 1011

8.74385 x 108
1.32194 x 1011
2.61592 x 1011

1.26872 x 10°
1.34603 x 1011
2.85339 x 1011




TABLE VL- COMPARISON OF FREQUENCY PARAMETER w? OF AN ORTHOTROPIC CYLINDER
WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS
AND EXACT METHOD OF REFERENCE 16 — Concluded

Present analysis

1.01231 x 109
1.89737 x 1011
3.09484 x 1011

1.07881 x 109
1.88906 x 1011
3.19069 x 1011

1.21550 x 10°
1.88205 x 1011
3.34351 x 1011

1.45929 x 109
1.88257 x 1011
3.54695 x 1011

1.85912 x 109
1.89540 x 1011
3.79646 x 1011

5.31084 x 10°
4.27220 x 1011
6.82044 x 1011

5.45179 x 109
4.25852 x 1011
6.92169 x 1011

5.70636 x 109
4.24463 x 1011
7.08592 x 1011

6.10407 x 109
4.22240 x 1011
7.30801 x 1011

6.68682 x 109
4.21001 x 1011
7.58307 x 1011

n==6

n=9

Reference 16

1.01231 x 109
1.89737 x 101!
3.09484 x 1011

1.07880 x 109
1.88906 x 1011
3.19069 x 1011

1.215546 x 109
1.88205 x 1011
3.34351 x 101l

1.45885 x 109

1.88256 x 1011
3.54700 x 10%1
1.85661 x 109
1.89533 x 1011
3.79631 x 1011
5.31084 x 109
4.27220 x 1011

1011

109
1011

6.82044

5.45179
4.25852
6.92169 x 1011

X

X

X

X

X

X

5.70631 x 10

4.24022 x 1011

7.08591 x 1011

6.10360 x 109

4.22239 x 1011

7.30800 x 1011
X
X
X

109
1011
10l1

6.68415
4.21001
7.58295

w2 Se(:"2

>

Present analysis
n="17

1.90756 x 109
2.58318 x 1011
4.17137 x 1011

1.99482 x 10°
2.47246 x 1011
4.26965 x 1011

2.16263 x 109
2.56061 x 1011
4.42737 x 1011

2.44390 x 109
2.55363 x 1011
4.63855 x 1011

2.88407 x 10°
2.55664 x 1011
4.89809 x 1011

n=10
8.13868 x 109
5.27528 x 1011
8.39310 x 1011

8.31196 x 10%
5.26066 x 1011
8.49529 x 1011

8.61988 x 109
5.24019 x 1011
8.66169 x 1011

9.09120 x 10°
5.21849 x 1011
8.88772 x 1011

9.76702 x 10%
5.20031 x 1011
9.16865 x 1011

Reference 16

1.90756 x 109
2.58318 x 1011
4.17187 x 1011

1.99481 x 109
2.47246 x 1011
4.26965 x 1011

2.16258 x 10°
2.56061 x 1011
4.42737 x 1011

2.44346 % 109
2.55362 x 1011
4.63851 x 1011

2.88152 x 109
2.55657 x 1011
4.89791 x 1011

8.13868 x 109
5.27528 x 1011
8.39310 x 1011

8.31196 x 109
5.26066 x 1011
8.49529 x 1011

8.61982 x 109
5.24019 x 1011
8.66169 x 1011

9.09072 x 109
5.21849 x 101!
8.88769 x 1011

9.76427 x 109
5.20024 x 1011
9.16854 x 1011

Present analysis

n=28

3.29043 x 109
3.37482 x 1011
5.41321 x 1011

3.40265 x 109
3.36238 % 1011
5.51321 x 1011

3.61029 x 109
3.34688 x 1011
5.67465 x 1011

3.94411 x 109
3.33389 x 1011
5.89187 x 1011

4.44733 x 10°
3.32856 x 1011
6.15984 x 1011

Reference 16

3.29043 x 109
3.37482 x 1011
5.41321 x 1011

3.40265 x 109
3.36238 x 1011
5.51321 x 1011

3.61024 x 109
3.34688 x 1011
5.67462 x 1011

3.94365 x 109
3.33387 x 101!
5.89184 x 1011

4.44473 x 109
3.32849 x 1011
6.15972 x 1011
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TABLE VIL.- NATURAL FREQUENCIES OF A FREE-FREE 120° CONICAL

FRUSTUM SHELIL AS A FUNCTION OF NUMBER OF CIRCULAR
NODE LINES IN NORMAL DISPLACEMENT w

Number of circular
node lines in w

48

[S1NS: IS) | B B b W W W NN | e
i

p-1

Mode-identification
figure

16(a)
16(f)
16(3)
16(b)
16(k)

16(c)
16(g)
16(1)
16(d)
16(h)
16(m)
16(e)
16(i)
16(n)

w2, sec-2

Present analysis

3.903 x 104
1.780 x 109
4.337 x 109

1.858 x 10"
8.045 x 109

92.267 % 107
2.422 x 10°
1.311 % 1010

9.754 X 107
4.127 % 109
1.874 x 1010

3.314 x 107
6.342 x 109
2.019 x 1010

Reference 1

3.900 x 10%
1.781 x 109
4.337 % 109

1.861 % 107
8.045 x 10?

2.286 X 107
2.422 x 109
1.314 x 1010_

2.831 % 107
4,127 x 109
1.951 x 1010

3.654 X 107
6.342 x 109




TABLE VIII.- NATURAL FREQUENCIES OF A CLAMPED-FREE 120° CONICAL

FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CIRCULAR

NODE LINES IN NORMAL DISPLACEMENT w

Number of circular
node lines in w

[ S WS | B B W OW W NN e e

(-2

Mode-identification

w2, sec-2

figure Present analysis Reference 1
17(a) 1.199 x 107 1.195 x 107
17(f) 1.794 x 109 1.795 % 109
17(k) 4.290 x 109 4.290 x 109
17(b) 1.948 x 107 1.953 x 107
17(g) 1.420 x 109 1.420 % 109
17(c) 2.420 x 107 2.453 x 107
17(h) 3.069 x 109 3.076 x 109
17(1) 8.695 x 109 8.702 x 109
17(d) 2.940 x 107 3.076 x 107
17(m) 1.304 x 1010 1.325 x 1010
17(39) 5.224 x 1010 | .
17(e) 3.545% 107 | cecmemmeee-
17() 1.025%x 1010 |
17(n) 1.760 x 1010 | _______
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TABLE IX.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL HAVING
POSITIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NODAL CIRCLES
IN NORMAL DISPLACEMENT w

[n=2]
Number of circular Mode-identification 92, sec™2
node lines in w figure (present analysis)

0 20(a) 0.1425

0 20(f) .2340

0 20(k) 5.659

1 20(b) 0.3607

1 20(g) 3.918

1 20(D) 9.754

2 20(c) 0.5507

2 20(h) 5.914

2 20(m) 15.90

3 20(d) 0.6641

3 20(i) 8.571

3 20(n) 24.40

4 20(e) 0.7260

4 20(j) 12.26

4 20(o) 35.24




TABLE X.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL WITH
NEGATIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NUMBER OF
CIRCULAR NODE LINES IN NORMAL DISPLACEMENT w

b1

Number of circular Mode-identification Q2, sec-2
node lines in w figure (present analysis)

0 21(a) 0.0246
0 21(f) 1.888

0 21(k) 5.804

1 21(b) 0.1950
1 21(g) 3.243

1 21(1) 8.660

2 21(c) 0.403

2 21(h) 5.128

2 21(m) 13.96

3 21(d) 0.5547
3 21(3) 1.347

3 21(n) 7.738

4 21(e) 0.6499
4 21(j) 11.13

4 21(0) 31.39




52

Figure

1- Geometry of a shell of revolution.



Figure 2.- Typical idealization of shell of revolution showing geometrically exact finite elements.
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24

12 rows

4

6(K+1) cols. —>

=12 cols.+
‘
i W 6 rows
k= | .
=2 f
k=3
_.6cols.

6(K+1)rows

k

"
0
N

k

1
0

Figure 3.- Ilustration of synthesis of stiffness and mass matrices.



r =5in. = 12.7 cm
1/R; =0
1/Rg = 0.2 in."1 = 0.07874 cm~1
r'=0
R'l =0
L = 20 in. = 50.8 cm
E = 2.96 X 107 1b/in2 = 2.0408 X 107 N/cm2
p = 0.29 .
0 =1.33 % 10-4 Ib-sec2/in% = 0.78335 x 104 N-sec2/cm
h = 0.008 in. = 0.02032 cm

(a) Isotropic cylinder.

r=1.925in. = 4.8895 cm

l/Rl =0

1/Rg = 0.5195 in"1 = 0.2045 cm~1
r=20
Ry =0

h = 0.065 in. = 0.165 cm
L = 15.53 in. = 39.4462 cm

ph = 0.1211 X 10-4 Ib-sec2/in3 = 0.3287 x 10~ 2 N-sec2/cm3

Cy1 = 1.25% 108 1b/in. = 2.189 x 106 N/cm
C19 = 0.187 x 106 1b/in. = 0.327 x 106 N/cm
Cgg = 0.742 X 106 1b/in. = 1.299 x 108 N/cm
Cgg = 0.473 % 106 1b/in. = 0.828 x 106 N/cm
Djyq = 0.652 X 106 Ib-in. = 7.367 x 106 N-cm
Dig = 1.767 X 106 1b-in. = 19.964 X 106 N-cm
Dgg = 2.767 X 106 Ib-in. = 31.263 x 106 N-cm
Dgg = 9 X 106 1b-in. = 101.686 x 106 N-cm

(b} Orthotropic cylinder.

Figure 4.- Properties of the shells analyzed for sample calculations.
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r=3+sV3/2 (in.) = 7.62 + s V3/2 (cm)

1/Ry=0
1/Rg = —L =L (em-
0.1667 + s\3 0.06562 + s\3
r'= \/§/2
| T 22 106.7
L=22 (in) = =2 (cm)
V3 V3
E=1%107 Ib/in2 = 6.8948 X 106 N/cm2
p=0.315

1)

p = 2.54 X 10-4 Ib-sec2/in% = 0.2714 x 10-4 N-sec2/cm4

h = 0.025 in. = 0.0635 cm

(c) Isotropic 120° conical frustum.

r =3 cos (0.5 - ;f;) - 1.879 (in.) = 7.62 cos(o.s -

——q—) - 4.773 (cm)

p =1 lb-sec2/ind = 0.10687 N-sec2/cm4
h = 0.001 in. = 0.00254 cm

{d) Isotropic shell of positive Gaussian curvature.

Figure 4.- Continued.
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7.62
1/Ry = 0.333 in"1 = 0.131 cm-1
cos (0.5 - %) cos (0.5 - %)
1/Rg = -~ (in~1) w L8200 (em-1y
3 cos (0.5 - —> - 1.879 7.62 cos (0.5 -5\ _4.73
3 7.62
N _ S\ o g __8
| T sin <0.5 3) sin (1.27 7.62)
R'1 =0
L=3in.=7.62 cm
E =1 1b/in2 = 0.68948 N/cm2
u = 0.30



L]
Il

1 - 20{cos[-(1.5 - §)0.5] - 1} (in.)

2.54 - 50.8 {cos[~(3.81 - 5)0.01969] - 1} (cm)
1/Rq = -0.05 in-1 = -0.01969 cm~1
-cos[:-(1.5 - s)0.05:|

n

1 Ry = in-1
/ -1 + 20{cos[~(1.5 - £)0.05] - 1)
) ~cos[-(3.81 - )0.01969) o1
-2.54 + 50.8{cos[-(3.81 - £)0.01969] - 1}
r' = sin[-(1.5 - $)0.05) = sin[-(3.81 - 5)0.01969)
R'l =0

L=3in. =7.62 cm

E = 0.91 1b/in2 = 0.6274 N/cm?2

© = 0.30

p = 1 lb-sec2/in% = 0.10687 N-sec2/cm?
h = 0.001 in. = 0.00254 cm

{e) Isotropic shell of negative Gaussian curvature.

r=0.5+s (in.) = 1.27 + s (cm)

1/R1=0
1/R2=0
r'=1
R'1=0

= 0.5 in. = 1.27 em

E = 10.92 1b/in2 = 7.5291 N/cm?2
p=0.30

p = 11b-sec2/in = 0.10687 N-sec2/cm4
h=1in.=2.54 ¢cm

i

(f) Isotropic annular plate.

Figure 4.- Concluded.
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Figure 5.- Minimum circular frequencies of a cylindrical shell computed by present method and method of reference 15. Freely supported edges.
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Figure 6.- Minimum circular frequencies of an orthotropic cylindrical shell computed by present method and method of reference 16.
Freely supported edges.
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Figure 7.- Minimum circular frequencies of a 1200 conical frustum by present method and method of reference 1.
Free-free edge conditions.
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Figure 8.- Minimum circular frequencies of a 1200 conical frustum by present method and method of reference 1.
Clamped-free edge conditions.
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Number of circumferential waves, n
Figure 9.- Minimum nondimensional frequencies of a shell of positive Gaussian curvature as computed by present method and
method of reference 4. Freely supported edges.
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Figure 10.- Minimum nondimensional frequencies of a shell of negative Gaussian curvature as computed by present method and

method of reference 4. Freely supported edges.
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Number of circumferential waves, n

figure 11.- Minimum circular frequencies of an annular plate as computed by present method and method of reference 17. Free-free edges.
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Figure 12.- Frequencies of an isotropic cyiinder as computed by present method and method of reference 15. Freely supported edges; n = 2.
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Figure 13.- Frequencies of an orthotropic cylinder as computed by present method and method of reference 16.

Freely supported edges; n = 2.
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Figure 14.- Circular frequencies of a free-free 120° conical frustum as computed by present method and method of reference 1.
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Figure 15.- Frequencies of a 1200 conical frustum shell as computed by present method and method of reference 1. Clamped at
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Figure 16,- Natural mode shapes of a free-free 120° conical frustum corresponding to the frequencies shown In figure 14,
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Figure 18.- Circular frequencies of a shell with positive Gaussian curvature with freely supported edges. n = 2.
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Figure 20~ Natural mode shapes of a shell of positive Gaussian curvature corresponding to the frequencies shown in figure 18,
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Figure 20.- Continued.
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Figure 21~ Natural mode shapes of a shell having negative Gaussian
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